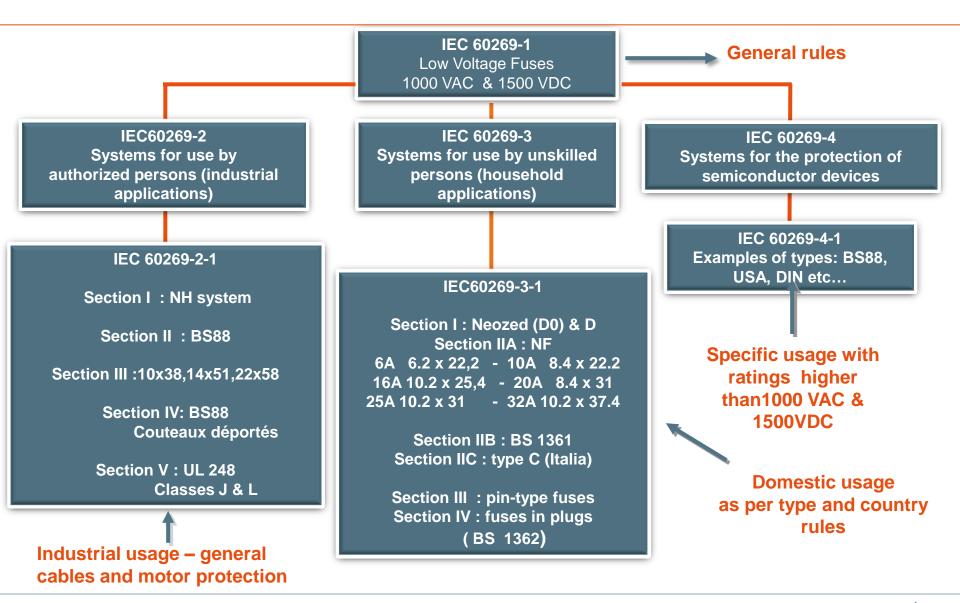


IEC 60269 GG & AM STANDARD LOW VOLTAGE FUSES EDUPACK TRAINING MODULE

2012



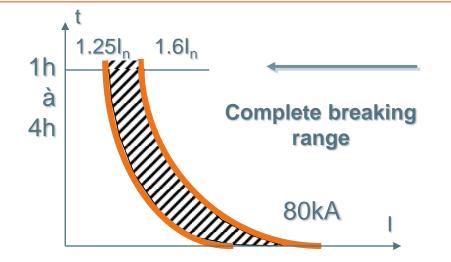
COMPARISON OF FUSE TYPE GG, AM, URD, GRB

INTRODUCTION TO IEC 60269 STANDARD

FUSE APPLICATION

Туре	Applications	Breaking range	
aM	Short-circuit protection of motor circuits	uits Partial range (back-up)	
aR	Protection of semiconductors		
gG	General purpose: mainly cable protection		
gM	Motor circuit protection		
gN	North American general purpose for conductor protection		
gD	North American general purpose time delay	Full range	
gR, gS	gTr Protection of transformers		
gTr			
gL, gF, gI, gII			

4 EduPack Trainng Modules – IEC 60269 gG & aM Standard Low Voltage Fuses - Mersen© 2012

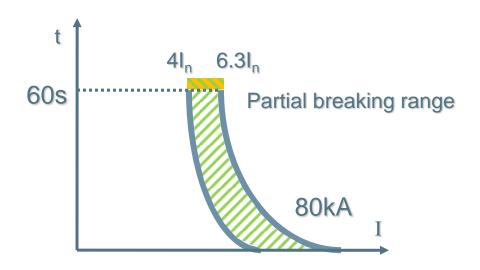


A gG fuse made in any technology can be replaced by another gG fuse from another technology because they have the same electrical data: Time current curve must go between gates defined by IEC60269 (see next slides) Max I²t is defined by IEC60269 etc...

However it is absolutely necessary to check the voltage and the breaking capacity of the new fuse are not lower than the values of the other fuses or at least fit with the circuit requirement.

GG TIME CURRENT CURVES AS PER IEC 60269

Conventional time: 1h to 4h (values versus fuse rating)


"gG": Protection against all overloads.

	Gates for some ratings as per IEC 60269			
Fuse rating (A)	I _{mini} @ 10s (A)	I _{max} @ 5s (A)	I _{mini} @ 0.1s (A)	I _{max} @ 0.1s (A)
25	52	110	150	260
80	215	425	610	1100
250	750	1650	2590	4500
800	3060	7000	10600	19000
1250	5000	13000	19000	35000

AM TIME CURRENT CURVES AS PER IEC 6026

"aM": Protection against short circuit current.

Gates for any current rating In		
Current	T _{mini} (s)	T _{max} (s)
4 In	60	
6.3 In		60
8 In	0.5	
10 In	0.2	
12.5 ln		0.5
19 In		0.1

PROTECTION LEVEL PROTECTION COORDINATION IEC 60947

IEC 60947- 4 - 1 belongs to:

Contactors et motor-starters

• Electromechanical contactors et motor-starters § 8.2.5.1.: Performance under short circuits conditions

In this paragraph coordination types are defined as follows:

• Type 1 coordination:

type 1 coordination requires that, under short circuit conditions, the contactor or starter shall cause no danger to persons or installations and may not be suitable for further service without repair and replacement of parts.

• Type 2 coordination:

type 2 coordination requires that, under short circuit conditions, the contactor or starter shall cause no danger to persons or installations and shall be suitable for further use. The risk of contact welding is recognized, in which case the manufacturer shall indicate the measures to be taken as regards the maintenance of the equipment.

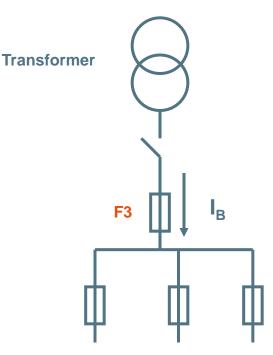
Selection of the fuse voltage rating \boldsymbol{U}_N for conductor and motor protection: $\boldsymbol{G}\boldsymbol{G}$ & $\boldsymbol{A}\boldsymbol{M}$ fuses

Voltage is the most critical parameter. Any fuse selection must start by the choice of the voltage rating V_N of the fuse. The maximum voltage of the circuit $V_{circuit max}$ (this is the rated voltage + variation) must be lower than the maximal operational voltage of the fuse $V_{fuse max}$ given in the table.

U_{fuse max} > V_{circuit max}

Example: a circuit is rated 400 V \pm 15% then V_{circuit max} = 460 V consequently the fuse rated 500 V must be used.

Fuse type	Rated Voltage Un (V)	Maximum operational voltage (V)
gG, gM, aR, aM	230	253
	400	440
	500	550
	690	725
gN, gD (America)	600	600


GG & AM FUSE SELECTION INFLUENCE OF TEMPERATURE AND AIR COOLING

When the temperature θ_A is higher than 40°C and when there is an air cooling with air velocity V on the fuse current rating I_N is obtained from the operating current I_B as follows:

 $\mathbf{I}_{N} = \mathbf{I}_{B} \frac{\mathbf{K}_{\theta}}{\mathbf{K}_{V}}$

$\theta_{A}(^{\circ}C)$	Κ _θ
40	1
45	1.03
50	1.07
55	1.11
60	1.16
65	1.21
70	1.27

V (m / s)	Κ _v
0	1
1	1.05
2	1.10
3	1.15
4	1.20
5	1.25
> 5	1.25

GG FUSE SELECTION CABLE OVERLOAD PROTECTION

The protection of the cable is checked with the following parameters:

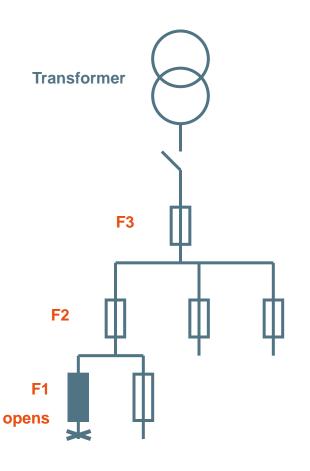
- I_B : working current of the cable
- I_z : maximum current carrying capacity of the cable
- I_N : rated current of the fuse
- I_F : conventional fusing current of the fuse

The cable is protected when the 2 following conditions are fulfilled:

$$I_{B} \leq I_{N} \leq I_{Z}$$

$$I_F \leq 1.45 I_Z$$

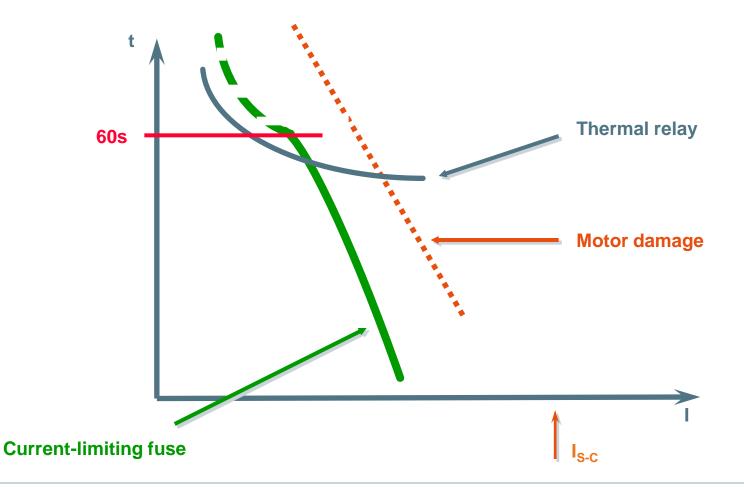
GG FUSE SELECTION SELECTIVITY


Selectivity: selectivity between gG fuse is achieved when the ratio between 2 ratings is about 1.60

Example:

F1 = 200 A

F2 = 315 A does not melt when F1 melts because 315 / 200 = 1.575


F3 = 550 A does not melt when F2 melts because 550 / 315 = 1.746

MOTOR CIRCUIT PROTECTION

The aM fuse must be associated to other protective devices because it must not operate for times above 60 seconds.

The choice of the fuse current rating is function of:

• The rated current I_{FLA} of the motor

• The starting current of the motor and the number of starts expected during the life time of the equipment

Tables and short rules are provided to obtain easily the suitable fuse.

GENERAL RECOMMENDATIONS FOR CAPACITOR PROTECTION

The fuse selection must take into account:

- The inrush current occurring when the capacitor is switched on
- The harmonic currents during the normal operation of the network
- The recovery voltage across the fuse terminals after a fault interruption.

